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Higgs: A Light, Composite Scalar?

LHC results show the Higgs is a relatively light scalar.

A composite scalar is a natural mechanism, e.g., in superconductivity.

Its mass is a function of dynamics: avoids fine-tuning.

Can composite strong dynamics produce a light scalar relative to the
rest of the spectrum?

Partially conserved dilatation current (PCDC)?
Consequence of near-conformal dynamics?

Recent lattice studies have indicated a light scalar in possibly
near-conformal theories.

SU(3) 8 flavor fundamental (Y. Aoki et al., arXiv:1403.5000)
SU(3) 2 flavor sextet (Fodor et al. PoS(Lattice 2013)062,
arXiv:1401.2176)
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Targeting the Conformal Window: SU(3) fundamental

It is difficult to target the conformal window.
Nf = 4 has confining, chirally broken behavior. No IRFP.
Nf = 12 has growing evidence for conformal behavior at an IRFP.
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Fermion mass parameterization

What if there was another knob to turn?
Start with 12 massless fermions.

Give mass to 8 of them.
4 remain massless fermions: m` = 0
8 tuneable massive fermions: mh 6= 0
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Fermion mass parameterization

What if there was another knob to turn?
Start with 12 massless fermions.
Give mass to 8 of them.

4 remain massless fermions: m` = 0
8 tuneable massive fermions: mh 6= 0

As mh → 0, we recover the 12
flavor chirally symmetric theory
exactly at mh = 0.

As mh →∞, we get the 4 flavor
chirally broken theory due to
decoupling.
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Flow Diagram

β

← RG flowin m
h

IRFP
mh = 0

mh =∞ Nf = 4

Nf = 12
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Studying the 4+8 Model

We can tune ourselves to walking behavior by varying mh.

This is a 4+8 flavor model to study walking dynamics.

Gauge Action: Mixed Fundamental-Adjoint Action.
Fermion Action: nHYP Smeared Staggered
FUEL for HMC and Measurements

Developed by James Osborn, Algorithms and Machines: Parallel 1F at
3:35 earlier today.

Explorations of the 4+8 flavor theory:
1 Running Coupling
2 Scale-dependent Fermion Anomalous Dimension
3 Spectrum
4 Finite T Phase Diagram

Preliminary results on:

(1) and (2) are being presented by Oliver Witzel during Tuesday’s
poster session.
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Setting mh

Our choice of mh should
set how long our theory
walks.

Need to choose mh large
enough to see chirally
broken behavior.

Plan:

Fix m` ≈ 0
Use 〈ψ̄ψ〉` as an order
parameter for chirally
broken phase.
Start mh = m`:
chirally symmetric.

β

← RG flowin m
h

IRFP
mh = 0

mh =∞ Nf = 4

Nf = 12

Raise mh until onset of chiral symmetry breaking.
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Physics Parameter: 〈ψ̄ψ〉`
Chirally symmetric phase: 〈ψ̄ψ〉` → 0 as m` → 0.

Parametrically small.

Chirally broken phase: 〈ψ̄ψ〉` ∝ Λ3
confinement
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Volume Dependence: Zero m` Limit

Recall: 〈ψ̄ψ〉lattice
` = cm`

a2 + 〈ψ̄ψ〉phys
`

Define 〈ψ̄ψ〉`
∣∣
m`=0.0

≡ linear extrapolation of 〈ψ̄ψ〉` to m` = 0.

Linear extrapolation from m` = 0.005, 0.010, errors in quadrature.
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We find a regime of volume-independent physics for 243× 48 volumes.
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Looking at the Scale: Wilson Flow

Wilson Flow can be used to define a lattice scale.
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Spectrum finite volume effects: Mπ,GB

Wall sources, point sinks following Gupta et al. Phys.Rev.D(43) 1991.

Focus on the Goldstone Boson pion mass for finite size effects.
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Control and Measurements

We’ve identified a chirally broken regime independent of volume
effects.

Meaningful results on modest 243 × 48 lattices.

1000 configurations separated by 10 MDTU.

9 sets of ensembles:

ml = 0.005, 0.010, 0.015 for a light flavor chiral limit.
mh = 0.060, 0.080, 0.100 to test theories with different RG flow.

There is autocorrelation depending on m`,mh—understood and
controlled with blocking.
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Connected Spectrum: Mπ,GB

Performed correlated fit of a single cosh to folded data.

C (t) = Aπcosh

(
Mπ(

T

2
− t)

)

Fit on t = 11 to 24.

Largest interval with p-value
> 5% confidence.

Aπ = 232(1)

Mπ = 0.1684(3)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20

F
it
m
as
s
o
n
[t
m
in
,N

t/
2]

tmin

β = 4.0, (243 × 48),
am` = 0.005, amh = 0.100

aMπ

PRELIMINARY

Evan Weinberg (Boston University) Scalars on the Lattice June 23, 2014 13 / 21



Connected Spectrum: Mπ,GB

Performed correlated fit of a single cosh to folded data.

C (t) = Aπcosh

(
Mπ(

T

2
− t)

)

Fit on t = 11 to 24.

Largest interval with p-value
> 5% confidence.

Aπ = 232(1)

Mπ = 0.1684(3)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20

F
it
m
as
s
on

[t
m
in
,N

t/
2]

tmin

β = 4.0, (243 × 48),
am` = 0.005, amh = 0.100

aMπ

PRELIMINARY

Evan Weinberg (Boston University) Scalars on the Lattice June 23, 2014 13 / 21



Connected Spectrum: Ma0

Performed correlated fit of a single cosh plus oscillating term to
folded data.

C (t) = Aa0cosh

(
Ma0(

T

2
− t)

)
+ Aπsc (−1)tcosh

(
Mπsc (

T

2
− t)

)

Fit on t = 13 to 24.

Largest interval with p-value
> 5% confidence.

Aa0 = −1.73(14)× 10−4

Ma0 = 3.206(75)× 10−1

Aπsc = 3.12(19)× 10−5

Mπsc = 2.13(14)× 10−1
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Connected Spectrum: Overall

Measured light flavor meson spectrum (π, a0, ρ).
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Disconnected Spectrum: Stochastics and Dilution

Stochastic sources and dilution to probe the light-flavor 0++ meson.

6 U(1) noise sources diluted in time, color, and even/odd spatially.
1728 inversions per 243 × 48 configuration.
Current statistics reflect 250 configurations per ensemble.

Used improved operators for disconnected measurement.

Cconn(t) = −Aa0e
−Ma0 t − (−1)t

(
Aπsc e

−Mπsc t
)

+ · · ·

Cdisc (t) = Aσe
−Mσt − Aa0e

−Ma0 t + (−1)t
(
Aπs̄c e

−Mπs̄c t − Aπsc e
−Mπsc t

)
+ · · ·

↓
Cσ(t) ≡ Cdisc(t)− Cconn(t) = Aσe

−Mσt + (−1)t
(
Aπs̄c e

−Mπs̄c t
)

+ · · ·
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Practical Considerations

Vacuum subtraction is noisy in Cdisc (t).

Idea: Fit correlators with an additional constant.

Cconn(t),Cσ(t) have large contamination from higher energy states.

Idea: Replace Cconn(t) with just analytic fit to a0, πsc state.

C ′conn(t) ≡ −Aa0e
−Ma0

t − (−1)t
(
Aπsc e

−Mπsc t
)

C ′σ(t) ≡ Cdisc (t)− C ′conn(t)

Conclusion: Consistent at large t with using measured Cconn(t), gives
consistent mass at smaller t.
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Disconnected Spectrum: Mσ

250 configurations separated by 40 MDTU each.
Errors are by jackknife analysis, blocksize of 1.
Data has fit constant subtracted for ease of visualization.

C ′σ(t) = Aσcosh

(
Mσ(

T

2
− t)

)
+ (−1)tAπs̄c cosh

(
Mπs̄c (

T

2
− t)

)
+ V

Fit on t = 6 to 24.

Largest interval with p-value
> 5% confidence.

Aσ = 9.5(17)e-4

Mσ = 2.665(83)e-1

Aπs̄c = −1.8(18)e-4

Mπs̄c = 2.02(26)e-1

V = −1.87(13)e-2
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0++ Results

Results for different mh.

Fit lines for Mπ,GB reflect PCAC relation.
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Conclusion

Model to study walking behavior with 4+8 flavors.

Tune to near-conformal behavior by shifting the mass of the 8 flavors.

mh can be tuned continuously as opposed to discretely for Nf .

〈ψ̄ψ〉` on finite volume, as a probe of chiral symmetry breaking,
shows a transition with mh.

Suggests physically viable parameters where simulations on moderate
lattices can be done.

The spectrum shows a splitting of the 0++ scalar state from the
connected spectrum.
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Thank you!
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